
NASA-CR-197290

The Navigation Toolkit

William F. Rich*

Stephen W. Strom

Flight Design and Dynamics Department

Rockwell Space Operations Company, 600 Gemini Ave., Houston, TX 77058

73062.1465@compuserve.corn, strom@acm.org

*Current address: HC65 Box 217A, Alpine, TX 79830

Abstract 1. The problem

This report summarizes the experience of the au-
thors in mana_ng, designing, and implementing
an object-oriented applications framework for
orbital navigation analysis for the Flight Design
and Dynamics Department of the Rockwell Space
Operations Company in Houston, in support of the
Mission Operations Directorate of NASA's
Johnson Space Center. The 8 person year project
spanned 1.5 years and produced 30,000 lines of
C++ code, replacing 150,000 lines of Fortran/C.

We believe that our experience is important be-
cause it represents a "second project" experience
and generated real production-quality code -- it
was not a pilot. The project successfully
demonstrated the use of "'continuous

development" or rapid prototyping techniques.
Use of formal methods and executable models

contributed to the quality of the code. Keys to the
success of the project were a strong architectural
vision and highly skilled workers.

This report focuses on "process and methodology,
and not on a detailed design description of the
product. But the true importance of the object-
oriented paradigm is its liberation of the developer
to focus on the problem rather than the means
used to solve the problem.

Navigation is the process of taking measurements

and using them to improve the knowledge of the

position and velocity of one or more vehicles. The

software system we were to build for analysis pur-

poses had to be able to model the dynamics of

physical systems, and simulate as well as process
measurements from various sensors. The current

system comprises 300,000 lines of mixed Fortran

and C. In this first increment, we decided to

replace approximately half of this code with a

completely re-engineered system written in C++.

2. Our solution

There is no "right" way to do any particular

project, and there is certainly no sin_e way to do

all projects. Indeed, the means must be determined

by the end. However, we believe the methodology

and process we used have shown themselves to be

highly successful in our domain, with our people.

2.1. Methodology

At the outset, we were most heavily influenced by

Booch, though we tried to remain goal-oriented

and not become "methodology slaves." The pri-

mary changes we made were heavier use of model-

ing and formal methods.

2.1.1. Language choices

We chose C++ as the language to implement the

(NASA-CR-197290)
TOOLKIT (Rockwell
Co.) 7 p

THE NAVIGATION

Space Operations

N95-22161

Unclas

G3/04 0039782

final applications. Despite its general excellence,

however, three problems plagued us: Strong

typing, usually a blessing but sometimes causing

us to write more code (possibly introducing more

errors than it prevented); programmer-supplied

memory-management; and the lack of a good

macro facility.

We also felt that a very-high-level language for

modeling would be useful, primarily in support of

requirements development. We chose Common

Lisp, with the Common Lisp Object System

(CLOS), as our modeling language for several rea-

sons: It supports many programming paradigms,

including object-oriented programming; it is

(relatively) efficient; the implementation of

Common Lisp we used (Macintosh Common Lisp)

had a remarkably small footprint, allowing it to

run on the 4 MB PowerBook we used for much of

our modeling work; we had a long acquaintance

and high comfort level with Lisp, particularly for

object-oriented programming (Strom 1986); it is

covered by an ANSI standard.

2.1.2. Domain analysis -- steal but formalize

We were able to reuse much of the documentation

on the existing system, primarily because of the

relatively clean division that was maintained

between "engineering" and "programming"

documentation. The more fundamental analysis,

however, was more difficult. This included the

creation of classes describing space vehicles, the

forces acting on them, transformations between

reference frames, etc. Most advanced textbooks on

classical mechanics (e.g., Goldstein 1980) take

these concepts for granted. We therefore used a

modern introductory text (Hestenes 1986) as the

foundation for this analysis. We used algebraic

specification techniques to capture the results of

this domain analysis (as suggested in Srinivas

1990) and recorded them in the software require-

ments specification.

2.1.3. Rapid prototyping

From the outset we were convinced of the need to

verify the integrity of the architecture with work-

ing prototypes. We were also convinced that, if the

change processes were controlled correctly, these

prototypes did not have to be disposable. W e
could achieve evolutionary development if all

subprocesses contributed to the ease of rapid

prototyping. For example, configuration

management facilitated the change process, rather

than constricting it. We tracked, rather than

restricted, the changes to our software.

Rapid prototyping lowers the overall risk to the

funding organization by providing almost imme-

diate payback in the form of executable code.

Here is a plot of the number of ultimately deliv-

ered modules and lines of non-user interface code

for our project, as a function of time:

Delivered Source Code

"if /-IN
I ; -" ; ; ; -' ; ; : ; -" . 0

No*'t.-GUl
modules

- - - Non.-GUl SLOe

2.1.4. The role of abstract data type (formal)

specifications

We previously worked in C with abstract data

types. This experience led us to start this new pro-

ject by focusing on structure. This approach was

insufficient to properly describe the desired be-

havior of a class, particularly under inheritance.

For example, when we introduced forces, we

wanted to be able to express the following design

constraint: /_ = mfi. Structural descriptions could

not do this. We turned, therefore, to abstract data

type, or algebraic, specifications. The power of

formal specificationsto describe the interface

(including behavior) of a class became immedi-

ately apparent.

Here is part of the current interface to the classes

Particle and Material_particle:

class Particle {

public :

Vector position_wrt(const Body&);

Vector velocity_wrt(const Body&) ;

Vector acceleration_wrt(const Body&) ;

protected:

virtual Vector position () ;

virtual Vector velocity () ;

virtual Vector acceleration () ;

};

class Material particle : public Particle {

_blic:
Vector s ,-_ of forces(const Body&);

double mass();

pr°teCt_v'v'v'_ualvector acceleration(};

);

// For all m in Material_particle and

// inertial reference frames b:

// m.acceleration_wrt(b) -----

// m.sum of forces(b) / m.mass()

We had worried that algebraic specifications might

be "too abstract" for users and developers. These

fears proved to be unfounded.

2.1.5. A rigorous definition of software archi-

tecture and detailed design

Consider the following apparently plausible design

for a Force class, based on Hestenes 1986 (we use

Harrel's higraph extension of Venn diagrams, see

Harrei 1988):

eratlo¢l

Planet, as a subclass of Material_particle, can func-

tion as an agent. When Gravity is asked to com-

pute the force on a material particle, it uses

Newton's law of universal gravitation, the mass of

the material particle, and the gravitational

parameter/a stored in the agent(here a Planet).

There is only one problem with this "design" --

It cannot be implemented in C++. t Static typing

prevents the Gravity force from seeing the agent's

i_. This diagram should not be considered to be a

"bad" design -- it is simply not a design at all (/or

implementation in C++). (It could, however, be a

design for a dynamically-typed language such as

Smalltalk, CLOS, or Dylan.) (A related problem is

that other forces, e.g., drag, may require properties

of the particle being acted upon besides mass.)

The tendency to postpone the gre.atest risk,

namely, the software architecture; leads us to

propose the following definition of software

architecture -- Software architecture is a

description, in the implementation language, of

the interfaces between the software components.

This definition has several advantages: the inter-

face can be compiled, providing a rigorous test for

syntactic compatibility of the interfaces; it ad-

dresses the greatest risk, i.e., implementability of

the software architecture, early in the project. The

software detailed design is the code. In accordance

with IEEE Std 1016-1987, the design specification

presents views of this design. Rapid prototyping is

increasingly detailed elucidation of the software

design.

2.2. Process

The process we created for development of the

Navigation Toolkit was driven by the problem we

had to solve and the people we had to solve it. We

held to the maxim that "Processes don't write

software -- people write software." Our intent was

to balance the need to give our people the

freedom to develop good solutions against the

need to continuously monitor the progress of the

project.

2.2.1. Team organization

We organized the team along orthogonal Work-

type (or W-type) and Application-type (or A-type)

lines (Swanson and Beath, 1990). The W-type or-

ganization followed Booch 1994, Brooks 1975,

and Stroustrup 1991. None of these roles was a

full-time position. Instead, each team member was

primarily a programmer. Most of the classes to be

developed required considerable technical

expertise, requiring the additional A-type

organization.

Before initial delivery, the resulting team looked

like this:

Doc_orale 17 ArchlectklasleCs 28 Oass designer

Maslet's 21 Co_gurUlon rnaragerMas_"s 13 Pro_ mam_

MJ,_s i S_,/s_em _d
_ At_lc_lon er_ln_r

_s

I'c'5
• 000

Oe

000

000 00

00

2.2.2. Macro and micro models

The macro process model we adopted is the spiral

model (Boehm 1988). The spiral model is risk

driven and incorporates prototyping as a funda-

mental component. It provides a rich set of project

milestones and supporting documentation. We

modeled the micro process with Meyer's cluster

model, in which a set of staggered waterfalls de-

scribes the development of "clusters" (groups of

closely related classes).

3. Assessment

Time to look back, to assess (sometimes painfully)

how well the project went.

3.1. Cost

How well did we do in predicting the course of the

project? Here is a comparison of our predictions
and the delivered lines of non-UI code:

Class category Predicted Actual
SLOC SLOC

1. Measurements 3000 1473

2. Integrators 1000 762
3. Environment 4000 4434

4. Filter 4000 957

5. Utilities 2000 2389

6. Pro_,rams 5000 •8i48

Total 19000 18163

We also estimated that there would be 11,000 lines

of UI code, or 30,000 lines of source code in all.

Simple COCOMO, organic mode (Boehm 1981),

predicted 85 person months of work. The actual

cost of the project as a function of time is shown

below:

t2o Estt_ed cost + unpar, ned work

100
Estlma,led oo_

° :i

We exceeded our cost estimates. Most of this is

attributable to unplanned work in late 1993,
associated with coordination with another com-

pany project. We expended 35 person months on

this effort. Excluding this unplanned work, the

cost of our project was extremely close to our

original projection. This implies that COCOMO is

a reasonably valid cost model for object-oriented

projects.

3.2. Quality metrics

Here is the cyclomatic complexity (metric 16 in

IEEE Std 982.1-1988) of the functions that

comprise the Toolkit:

1000

g
-_ 100
9
2

10

1

Toolkit ©omplex_y

J I IIJIII

II rllllT

[IIIrll
I I IIIlll

".L rIJII]l
10 100

Cyclomme¢ complexity

There was no observable correlation between cy-
clomatic complexity and defect density in our
code.

Halstead's complexity metrics (metric 14 in IEEE

Std 982.1-1988), derived from information-theo-

retical concerns, appear to have more utility for

our code. Here is a histogram of the Halstead dif-

ficulty of the Toolkit modules:

r_ltn com_t_ty

15

10

O

......... I I I I I I I I I I I I

Halstatd difllcu Ily

The modules with higher Halstead difficulty

turned out to be those which had been extensively

optimized, and have exhibited a higher number of

defects than modules with lower Halstead

difficulty.

Defects are usually tracked beginning with the

completion of integration testing. We began
tracking defects following unit test to demonstrate

that the code that emerged from unit testing was of

production quality. This contention is born out by

the density of discovered defects (metric 2 in

IEEE Std 982.1-1988):

Oi6covered Defect Density

• • , ; : ; ; ; ; ; : ; ;

It seems likely that the defect density will stabilize

at well under 5 defects per KSLOC. Again, it must

be emphasized that this is counting defects follow-

ing unit test. Rational has reported a defect density

of 2.21 defects per KSLOC for the Beta 1 iteration

of their Rose CASE tool (Walsh 1992). -The qual-

ity of our code, measured in defect clensity, is on a

par with the best industry standards.

4. Acknowledgments

This work was performed under NASA contract
NAS 9-180O0.

We acknowledge the hard work and dedication of

the following employees of Rockwell and Unisys
who at various times were members of the

Navigation Toolkit team: Gene Brownd, Kevin

Buie, Francis Cerbins, Mick Chang, Lynn Keller,

Steve Labar, and Jigesh Saheba. We also thank the

following users who were able to break our code

in the most ingenious ways: Ed Brown and

Carolyn Propst; interested colleagues from other

areas who variously contributed time, ideas, valued

criticism, encouragement, and equipment: Walt

Pace, Matthew Verona, and George Wu; and the

members of our management who actually trusted
us to do what we said we could do: Gene Brownd

and Bill Heilman.

5. References

Boehm, Barry W. 1981. Software engineering

'- r

economics. Englewood Cliffs, New Jersey.
Prentice-Hall.

Boehm, Barry W. 1988. A spiral model of software

development and enhancement. Computer 21 (5):
61-72.

Booch, Grady. 1994. Object-oriented analysis and

design with applications, 2d ed. Redwood City,

California: Benjamin/Cummings.

Brooks, Frederick P., Jr. The mythical man-month:

essays on software engineering. Reading,

Massachusetts: Addison-Wesley.

Brownd, J. E. 1992a. Post FADS software re-

quirements for navigation. Flight Design and

Dynamics Department, Rockwell Space Operations

Company.

Brownd, J. E. 1992b. Navigation software status

and actions, 11/6/92. Hight Design and Dynamics

Department, Rockwell Space Operations

Company.

Goldstein, Herbert. 1980. Classical mechanics, 2d

ed. Reading, Massachusetts: Addison-Wesley.

Harrel, David. 1988. "On Visual Formalisms,"

Communications of the ACM 31, no. 5 (1988):

514-530.

Henderson, Peter. 1993. Object-oriented specifi-

cation and design with C++. Maidenhead,

Berkshire, England: McGraw-Hill.

Hestenes, David. 1986. New foundations for classi-
cal mechanics. Dordrecht: Kluwer.

IEEE Std 982.1-1988. IEEE standard dictionary

of measures to produce reliable software.

Piscataway, New Jersey: IEEE Press.

IEEE Std 1016-1987. IEEE recommended prac-

tice for software design descriptions. Piscataway,

New Jersey: IEEE Press.

Meyer, Bertrand. 1988. Object-oriented software

construction. Hemel Hempstead, Hertfordshire:
Prentice-Hall.

Prieto-Diaz, Ruben and Guiilerrno Arango. 1991.

Domain analysis and softwaresystems modeling.

Los Alamitos, California: IEEE Computer Society
Press.

Srinivas, Y. V. Algebraic specifications for do-

mains. Technical report ASE-RTP- 102,

Department of Information and Computer

Science, University of California. Reprinted in

Prieto-Dfaz and Arango 1991.

Strom, S.W. 1986. Object-Oriented Programming

in Lisp. Houston: TRW Defense Systems Group.

Swanson, E. Burton and Cynthia Mathis Beath.

1990. Departmentalization in soft,'are develop-

ment and maintenance. Communications of the

ACM 33(6): 658-667.

Walsh, James F. 1992. Preliminary defect data

from the iterative development of a large C++

program. In OOPSLA '92 conference proceedings,

edited by Andreas Paepcke. New York: ACM
Press.

